Advertisements
Advertisements
प्रश्न
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
उत्तर
Let 22°30′ = `theta/2`
∴ θ = 45°
tan22°30′ = `tan theta/2`
= `(sin theta/2)/(cos theta/2)`
= `(2sin theta/2 cos theta/2)/(2cos^2 theta/2)`
= `sintheta/(1 + costheta)`
Put θ = 45°
∴ `sintheta/(1 + costheta) = sin 45^circ/(1 + cos 45^circ)`
= `(1/sqrt(2))/(1 + 1/sqrt(2))`
= `1/(sqrt(2) + 1)`
= `(1 xx (sqrt(2) - 1))/((sqrt(2) + 1)(sqrt(2) - 1))`
= `sqrt(2) - 1`
Hence, tan22°30' = `sqrt(2) - 1`.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that :
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Evaluate-
cos 20° + cos 100° + cos 140°