Advertisements
Advertisements
प्रश्न
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
उत्तर
\[\frac{1 - 4\sin10^\circ \sin70^\circ}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ 2\sin10^\circ \sin70^\circ \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ \cos\left( 10^\circ - 70^\circ \right) - \cos\left( 10^\circ + 70^\circ \right) \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ \cos\left( - 60^\circ \right) - \cos80^\circ \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ \cos60^\circ - \cos80^\circ \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2\left[ \frac{1}{2} - \cos\left( 90^\circ - 10^\circ \right) \right]}{2\sin10^\circ}\]
\[ = \frac{1 - 2 \times \frac{1}{2} + 2\cos\left( 90^\circ - 10^\circ \right)}{2\sin10^\circ}\]
\[ = \frac{2\sin10^\circ}{2\sin10^\circ}\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
sin 163° cos 347° + sin 73° sin 167° =
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.