Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[ \frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A}\]
\[ = \frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A - \cos 8A + \cos 7A - \sin 5A}\]
\[ = \frac{2\sin \left( \frac{5A - 7A}{2} \right) \cos \left( \frac{5A + 7A}{2} \right) + 2\sin \left( \frac{8A - 4A}{2} \right) \cos \left( \frac{8A + 4A}{2} \right)}{- 2\sin \left( \frac{4A + 8A}{2} \right) \sin \left( \frac{4A - 8A}{2} \right) - 2\sin \left( \frac{7A + 5A}{2} \right) \sin \left( \frac{7A - 5A}{2} \right)}\]
\[ \]
\[ = \frac{2\sin \left( - A \right) \cos 6A + 2\sin 2A \cos 6A}{- 2\sin 6A \sin \left( - 2A \right) - 2\sin 6A \sin A}\]
\[ = \frac{- 2\sin A \cos 6A + 2\sin 2A cos 6A}{2\sin 6A \sin 2A - 2\sin 6A \sin A}\]
\[ = \frac{2\cos 6A\left[ \sin 2A - \sin A \right]}{2\sin 6A\left[ \sin 2A - \sin A \right]}\]
\[ = \cot 6A\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.