Advertisements
Advertisements
प्रश्न
Prove that:
sin 50° − sin 70° + sin 10° = 0
उत्तर
Consider LHS:
\[\sin 50^\circ - \sin 70^\circ + \sin 10^\circ\]
\[ = 2\sin \left( \frac{50^\circ - 70^\circ}{2} \right) \cos \left( \frac{50^\circ + 70^\circ}{2} \right) + \sin 10^\circ \left\{ \because \sin A - \sin B = 2\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right) \right\}\]
\[ = 2\sin \left( - 10^\circ \right) \cos 60^\circ + \sin 10^\circ\]
\[ = 2 \times \frac{1}{2}\sin \left( - 10^\circ \right) + \sin 10^\circ\]
\[ = - \sin 10^\circ + \sin 10^\circ\]
\[ = 0\]
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.