Advertisements
Advertisements
प्रश्न
Show that :
उत्तर
\[\text{ LHS }= 2 \sin50^\circ \cos 85^\circ\]
\[ = \frac{\sin \left( 50^\circ + 85^\circ \right) + \sin \left( 50^\circ - 85^\circ \right)}{2} \left[ \because \sin A \cos B = \frac{1}{2}\left\{ \sin (A + B) + \sin (A - B) \right\} \right]\]
\[ = \frac{\sin 135^\circ + \sin \left( - 35^\circ \right)}{2}\]
\[ = \frac{\sin 135^\circ - \sin 35^\circ}{2}\]
\[ = \frac{\cos 45^\circ - \sin 35^\circ}{2} \left[ \because \sin \left( 90^\circ + 45^\circ \right) = \cos 45^\circ \right]\]
\[ = \frac{1}{2}\left( \frac{1}{\sqrt{2}} - \sin 35^\circ \right)\]
\[ = \frac{1}{2}\left[ \frac{1 - \sqrt{2}\sin 35^\circ}{\sqrt{2}} \right]\]
\[ = \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}\]
\[\text{ RHS }= \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}\]
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of cos 52° + cos 68° + cos 172° is
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.