Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[\cos \left( \frac{3\pi}{4} + x \right) - \cos \left( \frac{3\pi}{4} - x \right)\]
\[ = - 2\sin\left\{ \frac{\left( \frac{3\pi}{4} + x \right) + \left( \frac{3\pi}{4} - x \right)}{2} \right\} \sin \left\{ \frac{\left( \frac{3\pi}{4} + x \right) - \left( \frac{3\pi}{4} - x \right)}{2} \right\} \left\{ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right) \sin\left( \frac{A - B}{2} \right) \right\}\]
\[ = - 2\sin\frac{3\pi}{4} \sin x\]
\[ = - 2\sin \left( \pi - \frac{\pi}{4} \right) \sin x\]
\[ = - 2\sin \frac{\pi}{4} \sin x\]
\[ = - \sqrt{2}\sin x\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Show that :
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Evaluate-
cos 20° + cos 100° + cos 140°
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`