Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ LHS }= 4\cos x \cos \left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right)\]
\[ = 2\cos x\left[ 2 \cos \left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) \right]\]
\[ = 2\cos x\left[ \cos \left( \frac{\pi}{3} + x + \frac{\pi}{3} - x \right) + \cos \left( \frac{\pi}{3} + x - \frac{\pi}{3} + 2x \right) \right] \left[ \because 2\cos A \cos B = \cos (A + B) + \cos (A - B) \right]\]
\[ = 2\cos x\left[ \cos \frac{2\pi}{3} + \cos 2x \right]\]
\[ = 2\cos x\left[ - \frac{1}{2} + \cos 2x \right]\]
\[ = - \cos x + 2\cos x \cos 2x\]
\[ = - \cos x + \cos \left( x + 2x \right) + \cos \left( x - 2x \right)\]
\[ = - \cos x + \cos 3x + \cos\left( - x \right)\]
\[ = - \cos x + \cos 3x + \cos x\]
\[ = \cos 3x\]
\[\text{ RHS }= \cos 3x\]
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
cos 40° + cos 80° + cos 160° + cos 240° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
cos 35° + cos 85° + cos 155° =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`