Advertisements
Advertisements
प्रश्न
Prove that:
sin 23° + sin 37° = cos 7°
उत्तर
Consider LHS:
\[sin 23^\circ + \sin 37^\circ\]
\[ = 2\sin \left( \frac{23^\circ + 37^\circ}{2} \right) \cos \left( \frac{23^\circ - 37^\circ}{2} \right) \left\{ \because \sin A + \sin B = 2sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\sin 30^\circ \cos \left( - 7^\circ \right)\]
\[ = 2\sin 30^\circ\cos 7^\circ\]
\[ = 2 \times \frac{1}{2}\cos 7^\circ\]
\[ = \cos 7^\circ\]
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.