Advertisements
Advertisements
प्रश्न
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
उत्तर
\[\frac{\pi}{15} = 12^\circ, \frac{4\pi}{15} = 48^\circ, \frac{3\pi}{10} = 54^\circ\]
\[\sin12^\circ \sin48^\circ \sin54^\circ\]
\[ = \frac{1}{2}\left[ 2\sin12^\circ \sin48^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( 12^\circ - 48^\circ \right) - \cos\left( 12^\circ + 48^\circ \right) \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( - 36^\circ \right) - \cos60^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\sin54^\circ\left[ \cos36^\circ - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \sin\left( 90^\circ - 36^\circ \right) \cos36^\circ \right] - \frac{1}{4}\sin\left( 90^\circ - 36^\circ \right)\]
\[ = \frac{1}{2} \cos^2 36^\circ - \frac{1}{4}\cos36^\circ\]
\[ = \frac{1}{2} \left( \frac{\sqrt{5} + 1}{4} \right)^2 - \left( \frac{\sqrt{5} + 1}{16} \right) \left[ \cos36^\circ = \frac{\sqrt{5} + 1}{4} \right]\]
\[ = \frac{1}{2}\left( \frac{5 + 1 + 2\sqrt{5}}{16} \right) - \left( \frac{\sqrt{5} + 1}{16} \right)\]
\[ = \frac{6 + 2\sqrt{5}}{32} - \frac{\sqrt{5} + 1}{16}\]
\[ = \frac{6 + 2\sqrt{5} - 2\sqrt{5} - 2}{32}\]
\[ = \frac{4}{32}\]
\[ = \frac{1}{8}\]
APPEARS IN
संबंधित प्रश्न
Show that :
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 50° − sin 70° + sin 10° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.