Advertisements
Advertisements
प्रश्न
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
उत्तर
(cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Consider LHS:
(cos α + cos β)2 + (sin α + sin β)2
\[= \left[ 2\cos \left( \frac{\alpha + \beta}{2} \right) cos \left( \frac{\alpha - \beta}{2} \right) \right]^2 + \left[ 2\sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) \right]^2 \]
\[ = 4 \cos^2 \left( \frac{\alpha + \beta}{2} \right) \cos^2 \left( \frac{\alpha - \beta}{2} \right) + 4 \sin^2 \left( \frac{\alpha + \beta}{2} \right) \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
\[ = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\left[ \cos^2 \left( \frac{\alpha + \beta}{2} \right) + \sin^2 \left( \frac{\alpha + \beta}{2} \right) \right]\]
\[ = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`