Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[LHS = \cos \frac{\pi}{12} - \sin \frac{\pi}{12}\]
\[ = \cos \left( \frac{\pi}{2} - \frac{5\pi}{12} \right) - \sin \frac{\pi}{12}\]
\[ = \sin \left( \frac{5\pi}{12} \right) - \sin \frac{\pi}{12}\]
\[ = 2\sin \left( \frac{\frac{5\pi}{12} - \frac{\pi}{12}}{2} \right) \cos \left( \frac{\frac{5\pi}{12} + \frac{\pi}{12}}{2} \right) \left\{ \because \sin A - \sin B = 2\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right) \right\}\]
\[ = 2\sin \left( \frac{\pi}{6} \right) \cos \left( \frac{\pi}{4} \right)\]
\[ = 2 \times \frac{1}{2} \times \frac{1}{\sqrt{2}}\]
\[ = \frac{1}{\sqrt{2}}\]
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
cos 40° + cos 80° + cos 160° + cos 240° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`