Advertisements
Advertisements
प्रश्न
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
पर्याय
- \[\frac{3}{8}\]
- \[\frac{5}{8}\]
- \[\frac{3}{4}\]
- \[\frac{5}{4}\]
उत्तर
Given:
sin 2θ + sin 2ϕ = \[\frac{1}{2}\] .....(i)
and
cos 2θ + cos 2ϕ = \[\frac{3}{2}\] .....(ii)
Squaring and adding (i) and (ii), we get:
(sin 2θ + sin 2ϕ)2 + (cos 2θ + cos 2ϕ)2 = \[\frac{1}{4} + \frac{9}{4}\]
\[\Rightarrow \left[ 2\sin\left( \frac{2\theta + 2\phi}{2} \right)\cos\left( \frac{2\theta - 2\phi}{2} \right) \right]^2 + \left[ 2\cos\left( \frac{2\theta + 2\phi}{2} \right)\cos\left( \frac{2\theta - 2\phi}{2} \right) \right]^2 = \frac{5}{2}\]
\[ \Rightarrow 4 \sin^2 \left( \theta + \phi \right) \cos^2 \left( \theta - \phi \right) + 4 \cos^2 \left( \theta + \phi \right) \cos^2 \left( \theta - \phi \right) = \frac{5}{2}\]
\[ \Rightarrow 4 \cos^2 \left( \theta - \phi \right)\left[ \sin^2 \left( \theta + \phi \right) + \cos^2 \left( \theta + \phi \right) \right] = \frac{5}{2}\]
\[ \Rightarrow 4 \cos^2 \left( \theta - \phi \right) = \frac{5}{2}\]
\[ \Rightarrow \cos^2 \left( \theta - \phi \right) = \frac{5}{8}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
The value of cos 52° + cos 68° + cos 172° is
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`