Advertisements
Advertisements
प्रश्न
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
उत्तर
\[LHS = \cos 20^\circ \cos 40^\circ \cos 80^\circ\]
\[ = \frac{1}{2}\left[ 2\cos 20^\circ \cos 40^\circ \right] \cos 80^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos\left( 20^\circ - 40^\circ \right) \right] \cos 80^\circ\]
\[ = \frac{1}{2}\left[ \cos 60^\circ + \cos \left( - 20^\circ \right) \right] \cos 80^\circ\]
\[ = \frac{1}{2}\cos 80^\circ\left[ \frac{1}{2} + \cos 20^\circ \right]\]
\[ = \frac{1}{4}cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ\]
\[= \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ 2\cos 80^\circ \cos 20^\circ \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 80^\circ + 20^\circ \right) + \cos \left( 80^\circ - 20^\circ \right) \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos 100^\circ + \cos 60^\circ \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 180^\circ - 80^\circ \right) + \frac{1}{2} \right]\]
\[ = \frac{1}{4}\cos 80^\circ - \frac{1}{4}\cos 80^\circ + \frac{1}{8} \left\{ \because \cos \left( 180^\circ - 80^\circ \right) = - \cos 80^\circ \right\}\]
\[ = \frac{1}{8} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of sin 50° − sin 70° + sin 10° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`