English

Prove That:Cos 20° Cos 40° Cos 80° = \[\Frac{1}{8}\] - Mathematics

Advertisements
Advertisements

Question

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 

Sum

Solution

\[LHS = \cos 20^\circ \cos 40^\circ \cos 80^\circ\]
\[ = \frac{1}{2}\left[ 2\cos 20^\circ \cos 40^\circ \right] \cos 80^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos\left( 20^\circ - 40^\circ \right) \right] \cos 80^\circ\]
\[ = \frac{1}{2}\left[ \cos 60^\circ + \cos \left( - 20^\circ \right) \right] \cos 80^\circ\]
\[ = \frac{1}{2}\cos 80^\circ\left[ \frac{1}{2} + \cos 20^\circ \right]\]
\[ = \frac{1}{4}cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ\]
\[= \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ 2\cos 80^\circ \cos 20^\circ \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 80^\circ + 20^\circ \right) + \cos \left( 80^\circ - 20^\circ \right) \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos 100^\circ + \cos 60^\circ \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 180^\circ - 80^\circ \right) + \frac{1}{2} \right]\]
\[ = \frac{1}{4}\cos 80^\circ - \frac{1}{4}\cos 80^\circ + \frac{1}{8} \left\{ \because \cos \left( 180^\circ - 80^\circ \right) = - \cos 80^\circ \right\}\]
\[ = \frac{1}{8} = RHS\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 5.4 | Page 7

RELATED QUESTIONS

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


cos 40° + cos 80° + cos 160° + cos 240° =


The value of cos 52° + cos 68° + cos 172° is


The value of sin 50° − sin 70° + sin 10° is equal to


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×