Advertisements
Advertisements
Question
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Solution
\[LHS = \cos 20^\circ \cos 40^\circ \cos 80^\circ\]
\[ = \frac{1}{2}\left[ 2\cos 20^\circ \cos 40^\circ \right] \cos 80^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos\left( 20^\circ - 40^\circ \right) \right] \cos 80^\circ\]
\[ = \frac{1}{2}\left[ \cos 60^\circ + \cos \left( - 20^\circ \right) \right] \cos 80^\circ\]
\[ = \frac{1}{2}\cos 80^\circ\left[ \frac{1}{2} + \cos 20^\circ \right]\]
\[ = \frac{1}{4}cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ\]
\[= \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ 2\cos 80^\circ \cos 20^\circ \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 80^\circ + 20^\circ \right) + \cos \left( 80^\circ - 20^\circ \right) \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos 100^\circ + \cos 60^\circ \right]\]
\[ = \frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 180^\circ - 80^\circ \right) + \frac{1}{2} \right]\]
\[ = \frac{1}{4}\cos 80^\circ - \frac{1}{4}\cos 80^\circ + \frac{1}{8} \left\{ \because \cos \left( 180^\circ - 80^\circ \right) = - \cos 80^\circ \right\}\]
\[ = \frac{1}{8} = RHS\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 40° + cos 80° + cos 160° + cos 240° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.