Advertisements
Advertisements
Question
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Options
GP
HP
AP
None of these
Solution
HP
Given:
sin (B + C − A), sin (C + A − B) and sin (A + B − C) are in A.P.
\[\Rightarrow \sin\left( C + A - B \right) - \sin\left( B + C - A \right) = \sin\left( A + B - C \right) - \sin\left( C + A - B \right)\]
\[ \Rightarrow 2\sin\left( \frac{C + A - B - B - C + A}{2} \right) \cos\left( \frac{C + A - B + B + C - A}{2} \right) = 2\sin\left( \frac{A + B - C - C - A + B}{2} \right) \cos\left( \frac{A + B - C + C + A - B}{2} \right)\]
\[ \Rightarrow \sin\left( A - B \right) \cos C = \sin\left( B - C \right) \cos A\]
\[ \Rightarrow \sin A \cos B \cos C - \cos A \sin B \cos C = \sin B \cos C\cos A - \cos B \sin C \cos A\]
\[ \Rightarrow 2\sin B \cos A \cos C = \sin A \cos B \cos C + \cos A \cos B \sin C\]
Dividing both sides by cosA cosB cosC:
\[2\tan B = \tan A + \tan C \]
\[ \Rightarrow \frac{2}{cotB} = \frac{1}{cotA} + \frac{1}{cotC}\]
Hence, cotA, cotB and cotC are in HP.
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°