Advertisements
Advertisements
Question
Solution
\[\text{ LHS }= \sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2}\]
\[ = \frac{1}{2}\left[ 2\sin\frac{x}{2}\sin\frac{7x}{2} + 2\sin\frac{3x}{2}\sin\frac{11x}{2} \right]\]
\[ = \frac{1}{2}\left[ \cos\left( \frac{7x}{2} - \frac{x}{2} \right) - \cos\left( \frac{7x}{2} + \frac{x}{2} \right) + \cos\left( \frac{11x}{2} - \frac{3x}{2} \right) - \cos\left( \frac{11x}{2} + \frac{3x}{2} \right) \right]\]
\[ = \frac{1}{2}\left[ \cos3x - \cos4x + \cos4x - \cos7x \right]\]
\[ = \frac{1}{2}\left[ \cos3x - \cos7x \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( \frac{3x + 7x}{2} \right)\sin\left( \frac{3x - 7x}{2} \right) \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( 5x \right)\sin\left( - 2x \right) \right]\]
\[ = \sin\left( 5x \right)\sin\left( 2x \right) =\text{ RHS }\]
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: