Advertisements
Advertisements
Question
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Solution
\[LHS = \sin\left( \frac{5\pi}{18} \right) - \cos\frac{4\pi}{9}\]
\[ = \sin\left( \frac{5\pi}{18} \right) - \cos\left( \frac{\pi}{2} - \frac{\pi}{18} \right)\]
\[ = \sin\left( \frac{5\pi}{18} \right) - \sin\left( \frac{\pi}{18} \right)\]
\[ = 2\sin\left( \frac{\frac{5\pi}{18} - \frac{\pi}{18}}{2} \right)\cos\left( \frac{\frac{5\pi}{18} + \frac{\pi}{18}}{2} \right) \left[ \because \sin A - \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right]\]
\[ = 2\sin\left( \frac{\pi}{9} \right)\cos\frac{\pi}{6}\]
\[ = 2\sin\left( \frac{\pi}{9} \right)\cos\frac{\pi}{6}\]
\[ = 2 \times \frac{\sqrt{3}}{2}\sin\left( \frac{\pi}{9} \right)\]
\[ = \sqrt{3}\sin\left( \frac{\pi}{9} \right) = RHS\]
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
cos 35° + cos 85° + cos 155° =
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Evaluate-
cos 20° + cos 100° + cos 140°
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.