Advertisements
Advertisements
Question
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Solution
\[\cos \left( \alpha + \beta \right) \sin \left( \gamma + \delta \right) = \cos \left( \alpha - \beta \right) \sin \left( \gamma - \delta \right)\]
\[ \Rightarrow \left[ \cos \alpha\cos \beta - \sin \alpha \sin \beta \right]\left[ \sin \gamma \cos \delta + \cos \gamma \sin \delta \right] = \left[ \cos \alpha \cos \beta + \sin \alpha \sin \beta \right]\left[ \sin \gamma \cos \delta - \cos \gamma \sin \delta \right]\]
\[\frac{\left[ \cos\alpha \cos\beta - \sin\alpha \sin\beta \right]\left[ \sin\gamma \cos\delta + \cos\gamma \sin\delta \right]}{\sin \alpha \sin \beta \sin \gamma \sin \delta} = \frac{\left[ \cos\alpha \cos\beta + \sin\alpha \sin\beta \right]\left[ \sin\gamma \cos\delta - \cos\gamma \sin\delta \right]}{\sin \alpha \sin \beta \sin \gamma \sin \delta}\]
\[ \Rightarrow \frac{\left[ \cos\alpha \cos\beta - \sin\alpha\sin\beta \right]}{\sin \alpha \sin \beta} \times \frac{\left[ \sin\gamma \cos\delta + \cos\gamma \sin\delta \right]}{\sin \gamma \sin \delta} = \frac{\left[ \cos\alpha \cos\beta + \sin\alpha \sin\beta \right]}{\sin \alpha \sin \beta} \times \frac{\left[ \sin\gamma \cos\delta - \cos\gamma \sin\delta \right]}{\sin \gamma \sin \delta}\]
\[ \Rightarrow \left[ \cot\alpha \cot\beta - 1 \right]\left[ \cot\delta + \cot\gamma \right] = \left[ \cot\alpha \cot\beta + 1 \right]\left[ \cot\delta - \cot\gamma \right]\]
\[ \Rightarrow \cot\alpha \cot\beta cot\delta + \cot\alpha \cot\beta cot\gamma - cot\delta - cot\gamma = \cot\alpha \cot\beta cot\delta - \cot\alpha \cot\beta cot\gamma + cot\delta - cot\gamma \]
\[ \Rightarrow - \cot\delta - \cot\delta = - \cot\alpha \cot\beta \cot\gamma - \cot\alpha \cot\beta \cot\gamma\]
\[ \Rightarrow - 2\cot\delta = - 2\cot\alpha \cot\beta \cot\gamma\]
\[ \Rightarrow \cot\alpha \cot\beta \cot\gamma = \cot\delta\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.