Advertisements
Advertisements
Question
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Solution
cos(60° + A) sin(120° + A)
`= 1/2` [2 cos(60° + A) sin(120° + A)] ....[Multiply and divide by 2]
= `1/2` [sin((60° + A) + (120° + A))] – sin((60° + A) – (120° + A))] ....[∵ 2 cos A sin B = sin(A + B) – sin(A – B)]
= `1/2` [sin(180° + 2A) – sin(60° + A – 120° – A)]
= `1/2` [(-sin 2A) – sin(-60°)]
= `1/2` [-sin 2A + sin 60°]
= `1/2 [-sin 2"A" + sqrt3/2]`
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Evaluate-
cos 20° + cos 100° + cos 140°