Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \frac{\sin A - \sin B}{\cos A + \cos B}\]
\[ = \frac{2\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}{2\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)} \left[ \because \sin A - \sin B = 2\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right) and \cos A + \cos B = 2\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right]\]
\[ = \frac{\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}{\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)}\]
\[ = \tan\left( \frac{A - B}{2} \right)\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.