Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[ \frac{\sin A - \sin B}{\cos A + \cos B}\]
\[ = \frac{2\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}{2\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)} \left[ \because \sin A - \sin B = 2\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right) and \cos A + \cos B = 2\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right]\]
\[ = \frac{\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}{\cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)}\]
\[ = \tan\left( \frac{A - B}{2} \right)\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
Prove that:
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`