हिंदी

Prove that:  cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A

योग

उत्तर

Consider LHS: 
\[ \cos A + \cos 3A + \cos 5A + \cos 7A\]
\[ = 2\cos \left( \frac{A + 3A}{2} \right) \cos \left( \frac{A - 3A}{2} \right) + 2\cos \left( \frac{5A + 7A}{2} \right) \cos \left( \frac{5A - 7A}{2} \right) \left\{ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\cos 2A \cos\left( - A \right) + 2\cos 6A \cos\left( - A \right)\]
\[= 2\cos 2A \cos A + 2\cos 6A \cos A\]
\[ = 2\cos A(\cos 2A + \cos 6A)\]
\[ = 2\cos A \times 2\cos \left( \frac{2A + 6A}{2} \right) \cos \left( \frac{2A - 6A}{2} \right)\]
\[ = 4\cos A \cos 4A \cos\left( - 2A \right)\]
\[ = 4\cos A \cos 2A \cos 4A\]
 = RHS
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 6.2 | पृष्ठ १८

संबंधित प्रश्न

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


The value of sin 50° − sin 70° + sin 10° is equal to


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×