Advertisements
Advertisements
प्रश्न
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
उत्तर
Consider LHS:
\[ \sin A + \sin 2A + \sin 4A + \sin 5A\]
\[ = 2\sin \left( \frac{A + 2A}{2} \right) \cos \left( \frac{A - 2A}{2} \right) + 2\sin \left( \frac{4A + 5A}{2} \right) \cos \left( \frac{4A - 5A}{2} \right) \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\sin \left( \frac{3}{2}A \right) \cos \left( - \frac{A}{2} \right) + 2\sin \left( \frac{9}{2}A \right) \cos \left( - \frac{A}{2} \right)\]
\[= 2\sin \left( \frac{3}{2}A \right) \cos \left( \frac{A}{2} \right) + 2\sin \left( \frac{9}{2}A \right) \cos \left( \frac{A}{2} \right)\]
\[ = 2\cos \left( \frac{A}{2} \right)\left\{ \sin \frac{3}{2}A + \sin \frac{9}{2}A \right\}\]
\[ = 2\cos \left( \frac{A}{2} \right) \times 2\sin \left( \frac{\frac{3}{2}A + \frac{9}{2}A}{2} \right) \cos \left( \frac{\frac{3}{2}A - \frac{9}{2}A}{2} \right)\]
\[ = 4\cos \left( \frac{A}{2} \right) \sin 3A \cos \left( - \frac{3}{2}A \right)\]
\[ = 4\cos \frac{A}{2} \cos \left( \frac{3A}{2} \right) \sin 3A\]
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`