Advertisements
Advertisements
Question
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Solution
Consider LHS:
\[ \sin A + \sin 2A + \sin 4A + \sin 5A\]
\[ = 2\sin \left( \frac{A + 2A}{2} \right) \cos \left( \frac{A - 2A}{2} \right) + 2\sin \left( \frac{4A + 5A}{2} \right) \cos \left( \frac{4A - 5A}{2} \right) \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\sin \left( \frac{3}{2}A \right) \cos \left( - \frac{A}{2} \right) + 2\sin \left( \frac{9}{2}A \right) \cos \left( - \frac{A}{2} \right)\]
\[= 2\sin \left( \frac{3}{2}A \right) \cos \left( \frac{A}{2} \right) + 2\sin \left( \frac{9}{2}A \right) \cos \left( \frac{A}{2} \right)\]
\[ = 2\cos \left( \frac{A}{2} \right)\left\{ \sin \frac{3}{2}A + \sin \frac{9}{2}A \right\}\]
\[ = 2\cos \left( \frac{A}{2} \right) \times 2\sin \left( \frac{\frac{3}{2}A + \frac{9}{2}A}{2} \right) \cos \left( \frac{\frac{3}{2}A - \frac{9}{2}A}{2} \right)\]
\[ = 4\cos \left( \frac{A}{2} \right) \sin 3A \cos \left( - \frac{3}{2}A \right)\]
\[ = 4\cos \frac{A}{2} \cos \left( \frac{3A}{2} \right) \sin 3A\]
= RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
cos 35° + cos 85° + cos 155° =
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: