English

Prove That: Sin 20° Sin 40° Sin 60° Sin 80° = 3 16 - Mathematics

Advertisements
Advertisements

Question

Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 

Sum

Solution

\[LHS = \sin 20^\circ \sin 40^\circ\sin 60^\circ \sin 80^\circ\sin 60^\circ \left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right]\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos 20^\circ - \frac{1}{2} \right]\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 80^\circ \cos 20^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 10^\circ \right)\cos 20^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 10^\circ \cos 20^\circ - \frac{\sqrt{3}}{8}\sin\left( 80^\circ \right)\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 10^\circ \cos 20^\circ \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{3}{16} + \frac{\sqrt{3}}{8}\sin 80^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ \left[ \because \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ \right]\]
\[ = \frac{3}{16} = RHS\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 5.8 | Page 7

RELATED QUESTIONS

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


cos 40° + cos 80° + cos 160° + cos 240° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate-

cos 20° + cos 100° + cos 140°


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×