Advertisements
Advertisements
प्रश्न
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
उत्तर
\[LHS = \sin 20^\circ \sin 40^\circ\sin 60^\circ \sin 80^\circ\sin 60^\circ \left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right]\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos 20^\circ - \frac{1}{2} \right]\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 80^\circ \cos 20^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 10^\circ \right)\cos 20^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 10^\circ \cos 20^\circ - \frac{\sqrt{3}}{8}\sin\left( 80^\circ \right)\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 10^\circ \cos 20^\circ \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{3}{16} + \frac{\sqrt{3}}{8}\sin 80^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ \left[ \because \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ \right]\]
\[ = \frac{3}{16} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.