हिंदी

Prove That: Sin 20° Sin 40° Sin 60° Sin 80° = 3 16 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 

योग

उत्तर

\[LHS = \sin 20^\circ \sin 40^\circ\sin 60^\circ \sin 80^\circ\sin 60^\circ \left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right]\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos 20^\circ - \frac{1}{2} \right]\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 80^\circ \cos 20^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 10^\circ \right)\cos 20^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 10^\circ \cos 20^\circ - \frac{\sqrt{3}}{8}\sin\left( 80^\circ \right)\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 10^\circ \cos 20^\circ \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 80^\circ\]
\[ = \frac{3}{16} + \frac{\sqrt{3}}{8}\sin 80^\circ - \frac{\sqrt{3}}{8}\sin 80^\circ \left[ \because \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ \right]\]
\[ = \frac{3}{16} = RHS\]

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 5.8 | पृष्ठ ७

संबंधित प्रश्न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


cos 35° + cos 85° + cos 155° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the product of sine and cosine.

sin A + sin 2A


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Evaluate-

cos 20° + cos 100° + cos 140°


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×