Advertisements
Advertisements
प्रश्न
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
विकल्प
- \[\frac{m - 1}{m + 1}\]
- \[\frac{m + 2}{m - 2}\]
- \[\frac{m + 1}{m - 1}\]
None of these
उत्तर
Given:
\[\cos A = m\cos B\]
\[ \Rightarrow \frac{\cos A}{\cos B} = \frac{m}{1}\]
\[ \Rightarrow \frac{\cos A + \cos B}{\cos A - \cos B} = \frac{m + 1}{m - 1}\]
\[ \Rightarrow \frac{2\cos\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- 2\sin\left( \frac{B + A}{2} \right)\sin\left( \frac{B - A}{2} \right)} = \frac{m + 1}{m - 1} \left[ \because \cos A + \cos B = 2\cos\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \text{ and }\cos A - \cos B = 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{B - A}{2} \right) \right]\]
\[ \Rightarrow \frac{\cos\left( \frac{B - A}{2} \right)\cos\left( \frac{A + B}{2} \right)}{\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{B - A}{2} \right)} = \frac{m + 1}{m - 1} \]
\[ \Rightarrow \cot\left( \frac{A + B}{2} \right)\cot\left( \frac{B - A}{2} \right)=\frac{m + 1}{m - 1}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`