Advertisements
Advertisements
प्रश्न
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
उत्तर
Given that cosec A + sec A = cosec B + sec B
`1/(sin "A") + 1/(cos "A") = 1/(sin "B") + 1/(cos "A")`
`1/(sin "A") - 1/(sin "B") = 1/(cos "B") - 1/1/(cos "A")`
Arrange T-ratios of the sine and cosine in the separate side
∴ `(sin "B" - sin "A")/(sin "A" sin "B") = (cos "A" - cos "B")/(cos "A" cos "B")`
∴ `(sin "B" - sin "A")/(cos "A" - cos "B")` = tan A tan B
`[∵ sin "C" - sin "D" = 2 cos (("C + D")/2) sin (("C - D")/2)]`
∴ `(2 cos (("B + A")/2) sin (("B - A")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `(2 cos (("A + B")/2) sin (("- A + B")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `(-2 cos (("A + B")/2) sin (("A - B")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `cot (("A + B")/2)` = tan A tan B
APPEARS IN
संबंधित प्रश्न
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
Prove that:
Prove that:
Prove that:
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in