हिंदी

Prove that: cos ( A + B + C ) + cos ( − A + B + C ) + cos ( A − B + C ) + cos ( A + B − C ) sin ( A + B + C ) + sin ( − A + B + C ) + sin ( A − B + C ) − sin ( A + B − C ) = cot C - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]
योग

उत्तर

Consider LHS: 
\[ \frac{\cos(A + B + C) + \cos( - A + B + C) + \cos(A - B + C) + \cos(A + B - C)}{\sin(A + B + C) + \sin( - A + B + C) + \sin(A - B + C) - \sin(A + B - C)}\]
\[ = \frac{2\cos\left( \frac{A + B + C - A + B + C}{2} \right)\cos\left( \frac{A + B + C + A - B - C}{2} \right) + 2\cos\left( \frac{A - B + C + A + B - C}{2} \right)\cos\left( \frac{A - B + C - A - B + C}{2} \right)}{2\sin\left( \frac{A + B + C - A + B + C}{2} \right)\cos\left( \frac{A + B + C + A - B - C}{2} \right) + 2\sin\left( \frac{A - B + C - A - B + C}{2} \right)\cos\left( \frac{A - B + C + A + B - C}{2} \right)}\]
\[ = \frac{2\cos \left( B + C \right) \cos A + 2\cos A \cos \left( - B + C \right)}{2\sin \left( B + C \right) \cos A + 2\sin \left( - B + C \right) \cos A}\]
\[ = \frac{2\cos A\left[ \cos \left( B + C \right) + \cos\left( - B + C \right) \right]}{2\cos A\left[ \sin\left( B + C \right) + \sin\left( - B + C \right) \right]}\]
\[ = \frac{\cos \left( B + C \right) + \cos \left( - B + C \right)}{\sin\left( B + C \right) + \sin \left( - B + C \right)}\]
\[ = \frac{2\cos \left( \frac{B + C - B + C}{2} \right) \cos \left( \frac{B + C + B - C}{2} \right)}{2\sin\left( \frac{B + C - B + C}{2} \right) \cos \left( \frac{B + C + B - C}{2} \right)}\]
\[ = \frac{\cos C \cos B}{\sin C \cos B}\]
\[ = \cot C\]
 = RHS
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 13.1 | पृष्ठ १९

संबंधित प्रश्न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


cos 40° + cos 80° + cos 160° + cos 240° =


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


cos 35° + cos 85° + cos 155° =


The value of sin 50° − sin 70° + sin 10° is equal to


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×