Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \frac{\cos(A + B + C) + \cos( - A + B + C) + \cos(A - B + C) + \cos(A + B - C)}{\sin(A + B + C) + \sin( - A + B + C) + \sin(A - B + C) - \sin(A + B - C)}\]
\[ = \frac{2\cos\left( \frac{A + B + C - A + B + C}{2} \right)\cos\left( \frac{A + B + C + A - B - C}{2} \right) + 2\cos\left( \frac{A - B + C + A + B - C}{2} \right)\cos\left( \frac{A - B + C - A - B + C}{2} \right)}{2\sin\left( \frac{A + B + C - A + B + C}{2} \right)\cos\left( \frac{A + B + C + A - B - C}{2} \right) + 2\sin\left( \frac{A - B + C - A - B + C}{2} \right)\cos\left( \frac{A - B + C + A + B - C}{2} \right)}\]
\[ = \frac{2\cos \left( B + C \right) \cos A + 2\cos A \cos \left( - B + C \right)}{2\sin \left( B + C \right) \cos A + 2\sin \left( - B + C \right) \cos A}\]
\[ = \frac{2\cos A\left[ \cos \left( B + C \right) + \cos\left( - B + C \right) \right]}{2\cos A\left[ \sin\left( B + C \right) + \sin\left( - B + C \right) \right]}\]
\[ = \frac{\cos \left( B + C \right) + \cos \left( - B + C \right)}{\sin\left( B + C \right) + \sin \left( - B + C \right)}\]
\[ = \frac{2\cos \left( \frac{B + C - B + C}{2} \right) \cos \left( \frac{B + C + B - C}{2} \right)}{2\sin\left( \frac{B + C - B + C}{2} \right) \cos \left( \frac{B + C + B - C}{2} \right)}\]
\[ = \frac{\cos C \cos B}{\sin C \cos B}\]
\[ = \cot C\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`