Advertisements
Advertisements
Question
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Solution
LHS = sin A sin(60° + A) sin(60° – A)
= sin A [sin2 60° - sin2A]
[∵ sin (A + B) sin (A - B) = sin2A - sin2B]
= sin A `[(sqrt3/2)^2 - sin^2"A"]`
= sin A `[3/4 - sin^2"A"]`
= sin A `[(3 - 4 sin^2 "A")/4]`
`= 1/4` [3 sin A - 4 sin3A]
`= 1/4` sin 3A [∵ sin 3A = 3 sin A - 4 sin3A]
= RHS.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.