Advertisements
Advertisements
Question
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Solution
Consider sin (A – B) sin C
= (sin A cos B – cos A sin B) sin C
= sin A cos B sin C – cos A sin B sin C …….. (1)
Similarly sin(B – C) sin A = sin B cos C sin A – cos B sin C sin A …….. (2)
[Replace A by B, B by C, C by A in (1)]
and sin(C – A) sin B [Replace A by B, B by C, C by A in (2)]
= sin C cos A sin B – cos C sin A sin B …….. (3)
Adding (1), (2) and (3) we get
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
APPEARS IN
RELATED QUESTIONS
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Express the following as the product of sine and cosine.
cos 2θ – cos θ
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`