Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[\sin 80^\circ - \cos 70^\circ\]
\[ = \sin 80^\circ - \cos \left( 90^\circ - 20^\circ \right)\]
\[ = \sin 80^\circ - \sin 20^\circ\]
\[ = 2\sin \left( \frac{80^\circ - 20^\circ}{2} \right) \cos \left( \frac{80^\circ + 20^\circ}{2} \right) \left\{ \because \sin A - \sin B = 2\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right) \right\}\]
\[ = 2\sin 30^\circ \cos 50^\circ\]
\[ = 2 \times \frac{1}{2}\cos 50^\circ\]
\[ = \cos 50^\circ\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
sin 163° cos 347° + sin 73° sin 167° =
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`