Advertisements
Advertisements
Question
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Solution
Given:
sin 2A = λ sin 2B
\[\Rightarrow \frac{\sin2A + \sin2B}{\sin2A - \sin2B} = \frac{\lambda + 1}{\lambda - 1}\]
\[ \Rightarrow \frac{2\sin\left( \frac{2A + 2B}{2} \right)\cos\left( \frac{2A - 2B}{2} \right)}{2\sin\left( \frac{2A - 2B}{2} \right)\cos\left( \frac{2A + 2B}{2} \right)} = \frac{\lambda + 1}{\lambda - 1} \left[ \because \sin A + \sin B = 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \text{and }\sin A - \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right]\]
\[ \Rightarrow \frac{\sin\left( A + B \right)\cos\left( A - B \right)}{\sin\left( A - B \right)\cos\left( A + B \right)} = \frac{\lambda + 1}{\lambda - 1}\]
\[ \Rightarrow \tan\left( A + B \right)\cot\left( A - B \right)=\frac{\lambda + 1}{\lambda - 1}\]
\[\Rightarrow\frac{\tan\left( A + B \right)}{\tan\left( A - B \right)}=\frac{\lambda + 1}{\lambda - 1}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 35° + cos 85° + cos 155° =
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: