Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \frac{\sin\left( \theta + \phi \right) - 2\sin\theta + \sin\left( \theta - \phi \right)}{\cos\left( \theta + \phi \right) - 2\cos\theta + \cos\left( \theta - \phi \right)}\]
\[ = \frac{\sin\left( \theta + \phi \right) + \sin\left( \theta - \phi \right) - 2\sin\theta}{\cos\left( \theta + \phi \right) + \cos\left( \theta - \phi \right) - 2\cos\theta}\]
\[ = \frac{2\sin\left( \frac{\theta + \phi + \theta - \phi}{2} \right)\cos\left( \frac{\theta + \phi - \theta + \phi}{2} \right) - 2\sin\theta}{2\cos\left( \frac{\theta + \phi + \theta - \phi}{2} \right)\cos\left( \frac{\theta + \phi - \theta + \phi}{2} \right) - 2\cos\theta} \]
\[ = \frac{2\sin\theta\cos\phi - 2\sin\theta}{2\cos\theta\cos\phi - 2\cos\theta}\]
\[ = \frac{2\sin\theta\left[ \cos\phi - 1 \right]}{2\cos\theta\left[ \cos\phi - 1 \right]}\]
\[ = \tan\theta\]
= RHS
Hence, RHS = LHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: