Advertisements
Advertisements
Question
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Solution
sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\]
\[= \frac{1}{2} \times 2\left( \sin\frac{\pi}{12} \right) \left( \sin\frac{5\pi}{12} \right)\]
\[ = \frac{1}{2}\left[ \cos\left( \frac{\pi}{12} - \frac{5\pi}{12} \right) - \cos\left( \frac{\pi}{12} + \frac{5\pi}{12} \right) \right] \left[ \because 2\sin A \sin B = \cos(A - B) - \cos(A + B) \right]\]
\[ = \frac{1}{2}\left[ \cos\left( - \frac{\pi}{3} \right) - \cos\frac{\pi}{2} \right]\]
\[ = \frac{1}{2}\left( \frac{1}{2} - 0 \right)\]
\[ = \frac{1}{4}\]
APPEARS IN
RELATED QUESTIONS
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Evaluate:
sin 50° – sin 70° + sin 10°
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`