English

Prove That: Cos 4 a + Cos 3 a + Cos 2 a Sin 4 a + Sin 3 a + Sin 2 a = Cot 3 a - Mathematics

Advertisements
Advertisements

Question

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 

Sum

Solution

 Consider LHS: 
\[ \frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A}\]
\[ = \frac{\cos 4A + \cos 2A + \cos 3A}{\sin 4A + \sin 2A + \sin 3A}\]
\[ = \frac{2\cos \left( \frac{4A + 2A}{2} \right) \cos \left( \frac{4A - 2A}{2} \right) + \cos 3A}{2\sin \left( \frac{4A + 2A}{2} \right) \cos \left( \frac{4A - 2A}{2} \right) + \sin 3A}\]
\[ \]
\[ = \frac{2\cos 3A \cos A + \cos 3A}{2\sin 3A \cos A + \sin 3A}\]
\[ = \frac{\cos 3A\left[ 2\cos A + 1 \right]}{\sin 3A\left[ 2\cos A + 1 \right]}\]
\[ = \cot 3A\]
= RHS
Hence, RHS = LHS.

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 8.03 | Page 18

RELATED QUESTIONS

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

cos 40° + cos 80° + cos 160° + cos 240° =


sin 163° cos 347° + sin 73° sin 167° =


The value of cos 52° + cos 68° + cos 172° is


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Evaluate:

sin 50° – sin 70° + sin 10°


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×