Advertisements
Advertisements
Question
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Solution
Given:
sin A + sin B = α .....(i)
cos A + cos B = β .....(ii)
Dividing (i) by (ii):
\[\Rightarrow \frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\alpha}{\beta}\]
\[ \Rightarrow \frac{2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)}{2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)} = \frac{\alpha}{\beta} \left[ \because \sin A + \sin B = 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)\text{ and }\cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ \Rightarrow \frac{\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)}{\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)} = \frac{\alpha}{\beta}\]
\[ \Rightarrow \tan\left( \frac{A + B}{2} \right)=\frac{\alpha}{\beta}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
sin 163° cos 347° + sin 73° sin 167° =
The value of sin 50° − sin 70° + sin 10° is equal to
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.