English

The Value of Sin 50° − Sin 70° + Sin 10° is Equal to - Mathematics

Advertisements
Advertisements

Question

The value of sin 50° − sin 70° + sin 10° is equal to

Options

  • 1

  • 0

  • `1/2`

  • 2

MCQ
Sum

Solution

0

\[\sin50^\circ - \sin70^\circ + \sin10^\circ\]
\[ = 2\sin\left( \frac{50^\circ - 70^\circ}{2} \right) \cos\left( \frac{50^\circ + 70^\circ}{2} \right) + \sin10^\circ \left[ \because \sin A - \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right]\]
\[ = 2\sin\left( - 10^\circ \right) \cos60^\circ + \sin10^\circ\]
\[ = 2 \times \frac{1}{2}\sin\left( - 10^\circ \right) + \sin10^\circ\]
\[ = - \sin10^\circ + \sin10^\circ\]
\[ = 0\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.4 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.4 | Q 8 | Page 21

RELATED QUESTIONS

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

The value of cos 52° + cos 68° + cos 172° is


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×