Advertisements
Advertisements
Question
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Solution
Consider LHS:
\[ = \sin 3A + \sin 2A - \sin A\]
\[ = 2\sin \left( \frac{3A + 2A}{2} \right) cos \left( \frac{3A - 2A}{2} \right) - \sin A \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\sin \left( \frac{5}{2}A \right) \cos \left( \frac{A}{2} \right) - \sin A\]
\[= 2\sin \left( \frac{5}{2}A \right) cos \left( \frac{A}{2} \right) - 2\sin \frac{A}{2} \cos \frac{A}{2}\]
\[ = 2\cos \left( \frac{A}{2} \right) \left\{ \sin \frac{5}{2}A - \sin \frac{A}{2} \right\}\]
\[ = 2\cos \left( \frac{A}{2} \right) \times 2\sin \left( \frac{\frac{5}{2}A - \frac{A}{2}}{2} \right) \cos \left( \frac{\frac{5}{2}A + \frac{A}{2}}{2} \right)\]
\[ = 4\cos \left( \frac{A}{2} \right) \sin A \cos \left( \frac{3}{2}A \right)\]
\[ = 4\sin A \cos$\left( \frac{A}{2} \right)$\cos \left( \frac{3}{2}A \right)\]
= RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.