मराठी

Prove That: Sin 3a + Sin 2a − Sin a = 4 Sin a Cos a 2 3 a 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 

बेरीज

उत्तर

Consider LHS:
\[ = \sin 3A + \sin 2A - \sin A\]
\[ = 2\sin \left( \frac{3A + 2A}{2} \right) cos \left( \frac{3A - 2A}{2} \right) - \sin A \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\sin \left( \frac{5}{2}A \right) \cos \left( \frac{A}{2} \right) - \sin A\]
\[= 2\sin \left( \frac{5}{2}A \right) cos \left( \frac{A}{2} \right) - 2\sin \frac{A}{2} \cos \frac{A}{2}\]
\[ = 2\cos \left( \frac{A}{2} \right) \left\{ \sin \frac{5}{2}A - \sin \frac{A}{2} \right\}\]
\[ = 2\cos \left( \frac{A}{2} \right) \times 2\sin \left( \frac{\frac{5}{2}A - \frac{A}{2}}{2} \right) \cos \left( \frac{\frac{5}{2}A + \frac{A}{2}}{2} \right)\]
\[ = 4\cos \left( \frac{A}{2} \right) \sin A \cos \left( \frac{3}{2}A \right)\]
\[ = 4\sin A \cos$\left( \frac{A}{2} \right)$\cos \left( \frac{3}{2}A \right)\]
 = RHS
Hence, LHS = RHS

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 6.4 | पृष्ठ १८

संबंधित प्रश्‍न

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


cos 40° + cos 80° + cos 160° + cos 240° =


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of cos 52° + cos 68° + cos 172° is


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×