Advertisements
Advertisements
प्रश्न
Express the following as the product of sine and cosine.
sin A + sin 2A
उत्तर
sin A + sin 2A = 2 sin`(("A + 2A")/2) cos (("A - 2A")/2)` ...`[∵ sin "C" + sin "D" = sin (("C + D")/2) cos (("C - D")/2)]`
= 2 sin `"3A"/2` cos `"A"/2` ...[∵ cos(-θ) = cos θ]
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.