Advertisements
Advertisements
प्रश्न
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
उत्तर
Consider LHS:
\[\sin (B - C) \cos (A - D) + \sin (C - A) \cos (B - D) + \sin (A - B) \cos (C - D)\]
Multiplying by 2:
\[ 2\sin (B - C) \cos (A - D) + 2\sin(C - A) \cos (B - D) + 2\sin (A - B) \cos (C - D)\]
\[ = \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) + \sin \left( C - A + B - D \right) + \sin \left( C - A - B + D \right) + \sin \left( A - B + C - D \right) + \sin \left( A - B - C + D \right)\]
\[ = \sin\left\{ - \left( C + D - A - B \right) \right\} + \sin\left\{ - \left( A + C - B - D \right) \right\} + \sin\left\{ - \left( A + D - B - C \right) \right\} + \sin\left( C - A - B + D \right) + \sin\left( A - B + C - D \right) + \sin\left( A - B - C + D \right)\]
\[ = - \sin\left( C + D - A - B \right) - \sin\left( A + C - B - D \right) - \sin\left( A + D - B - C \right) + \sin\left( C - A - B + D \right) + \sin\left( A - B + C - D \right) + \sin\left( A - B - C + D \right)\]
\[ = 0\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
sin 163° cos 347° + sin 73° sin 167° =
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.