Advertisements
Advertisements
प्रश्न
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
उत्तर
Consider LHS:
\[\sin \left( B - C \right) \cos \left( A - D \right) + \sin \left( C - A \right) \cos \left( B - D \right) + \sin \left( A - B \right) \cos \left( C - D \right)\]
\[= \frac{1}{2}\left[ 2\sin \left( B - C \right) \cos \left( A - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( C - A \right) \cos \left( B - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( A - B \right) \cos\left( C - D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left\{ \left( B - C \right) + \left( A - D \right) \right\} + \sin \left\{ \left( B - C \right) - \left( A - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( C - A \right) + \left( B - D \right) \right\} + \sin \left\{ \left( C - A \right) - \left( B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( A - B \right) + \left( C - D \right) \right\} + \sin \left\{ \left( A - B \right) - \left( C - D \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left( C - A + B - D \right) + \sin \left( C - A - B + D \right) \right] + \frac{1}{2}\left[ \sin \left( A - B + C - D \right) + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left\{ - \left( - C + A - B + D \right) \right\} + \sin \left\{ - \left( - C + A + B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin\left\{ - \left( - A + B - C + D \right) \right\} + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\sin\left( B - C + A - D \right) + \frac{1}{2}\sin\left( B - C - A + D \right) - \frac{1}{2}\sin\left( - C + A - B + D \right) - \frac{1}{2}\sin\left( - C + A + B - D \right) - \frac{1}{2}\sin\left( - A + B - C + D \right) + \frac{1}{2}\sin\left( A - B - C + D \right)\]
\[ = 0\]
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
sin 163° cos 347° + sin 73° sin 167° =
The value of sin 50° − sin 70° + sin 10° is equal to
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`