Advertisements
Advertisements
प्रश्न
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
उत्तर
Consider LHS:
\[\sin A \sin \left( B - C \right) + \sin B \sin \left( C - A \right) + \sin C \sin \left( A - B \right)\]
\[ = \frac{1}{2}\left[ 2\sin A \sin \left( B - C \right) \right] + \frac{1}{2}\left[ 2\sin B \sin \left( C - A \right) \right] + \frac{1}{2}\left[ 2\sin C \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2}\left[ \cos \left\{ A - \left( B - C \right) \right\} - \cos \left\{ A + \left( B - C \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ B - \left( C - A \right) \right\} - \cos \left\{ B + \left( C - A \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ C - \left( A - B \right) \right\} - \cos \left\{ C + \left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \cos \left( A - B + C \right) - \cos \left( A + B - C \right) \right] + \frac{1}{2}\left[ \cos \left( B - C + A \right) - \cos\left( B + C - A \right) \right] + \frac{1}{2}\left[ \cos\left( C - A + B \right) - \cos\left( C + A - B \right) \right]\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos \left( A + B - C \right) + \frac{1}{2}\cos \left( B - C + A \right) - \frac{1}{2}\cos \left( B + C - A \right) + \frac{1}{2}\cos \left( C - A + B \right) - \frac{1}{2}\cos\left( C + A - B \right)\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos\left( A + B - C \right) + \frac{1}{2}\cos\left( A + B - C \right) - \frac{1}{2}\cos\left( B + C - A \right) + \frac{1}{2}\cos\left( B + C - A \right) - \frac{1}{2}\cos\left( A - B + C \right)\]
\[ = 0\]
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that :
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate:
sin 50° – sin 70° + sin 10°