मराठी

Show That: Sin A Sin (B − C) + Sin B Sin (C − A) + Sin C Sin (A − B) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0

बेरीज

उत्तर

Consider LHS: 
\[\sin A \sin \left( B - C \right) + \sin B \sin \left( C - A \right) + \sin C \sin \left( A - B \right)\]
\[ = \frac{1}{2}\left[ 2\sin A \sin \left( B - C \right) \right] + \frac{1}{2}\left[ 2\sin B \sin \left( C - A \right) \right] + \frac{1}{2}\left[ 2\sin C \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2}\left[ \cos \left\{ A - \left( B - C \right) \right\} - \cos \left\{ A + \left( B - C \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ B - \left( C - A \right) \right\} - \cos \left\{ B + \left( C - A \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ C - \left( A - B \right) \right\} - \cos \left\{ C + \left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \cos \left( A - B + C \right) - \cos \left( A + B - C \right) \right] + \frac{1}{2}\left[ \cos \left( B - C + A \right) - \cos\left( B + C - A \right) \right] + \frac{1}{2}\left[ \cos\left( C - A + B \right) - \cos\left( C + A - B \right) \right]\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos \left( A + B - C \right) + \frac{1}{2}\cos \left( B - C + A \right) - \frac{1}{2}\cos \left( B + C - A \right) + \frac{1}{2}\cos \left( C - A + B \right) - \frac{1}{2}\cos\left( C + A - B \right)\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos\left( A + B - C \right) + \frac{1}{2}\cos\left( A + B - C \right) - \frac{1}{2}\cos\left( B + C - A \right) + \frac{1}{2}\cos\left( B + C - A \right) - \frac{1}{2}\cos\left( A - B + C \right)\]
\[ = 0\]
 = RHS

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.1 | Q 6.1 | पृष्ठ ७

संबंधित प्रश्‍न

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


sin 47° + sin 61° − sin 11° − sin 25° is equal to


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate:

sin 50° – sin 70° + sin 10°


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×