Advertisements
Advertisements
प्रश्न
sin 47° + sin 61° − sin 11° − sin 25° is equal to
पर्याय
sin 36°
cos 36°
sin 7°
cos 7°
उत्तर
cos 7°
\[\sin47^\circ + \sin61^\circ - \sin11^\circ - \sin25^\circ\]
\[ = \sin47^\circ - \sin25^\circ + \sin61^\circ - \sin11^\circ\]
\[ = 2\sin\left( \frac{47^\circ - 25^\circ}{2} \right)\cos\left( \frac{47^\circ + 25^\circ}{2} \right) + 2\sin\left( \frac{61^\circ - 11^\circ}{2} \right)\cos\left( \frac{61^\circ + 11^\circ}{2} \right)\]
\[ = 2\sin11^\circ\cos36^\circ + 2\sin25^\circ\cos36^\circ\]
\[ = 2\cos36^\circ\left( \sin11^\circ + \sin25^\circ \right)\]
\[ = 2\cos36^\circ\left\{ 2\sin\left( \frac{11^\circ + 25^\circ}{2} \right)\cos\left( \frac{11^\circ - 25^\circ}{2} \right) \right\}\]
\[ = 4\cos36^\circ\sin18^\circ\cos7^\circ\]
\[ = 4 \times \left( \frac{\sqrt{5} - 1}{4} \right)\left( \frac{\sqrt{5} + 1}{4} \right)\cos7^\circ \left[ \cos36^\circ = \frac{\sqrt{5} + 1}{4}\text{ and }\sin18^\circ = \frac{\sqrt{5} - 1}{4} \right]\]
\[ = \frac{5 - 1}{4}\cos7^\circ\]
\[ = \cos7^\circ\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
The value of cos 52° + cos 68° + cos 172° is
The value of sin 50° − sin 70° + sin 10° is equal to
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`