Advertisements
Advertisements
प्रश्न
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
उत्तर
`= 1/2 [2 cos (7"A")/3 sin (5"A")/3]` ...[Multiply and divide by 2]
`= 1/2 [sin ((7"A")/3 + (5"A")/3) - sin ((7"A")/3 - (5"A")/3)]`
`= 1/2 [sin (12"A")/3 - sin (7"A" - 5"A")/3]`
`= 1/2 [sin 4"A" - sin (2"A")/3]`
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate-
cos 20° + cos 100° + cos 140°