Advertisements
Advertisements
प्रश्न
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
उत्तर
\[ = \frac{1}{2}\left[ 2\cos 40^\circ \cos 80^\circ \right] \cos 160^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 40^\circ + 80^\circ \right) + \cos \left( 40^\circ - 80^\circ \right) \right] \cos 160^\circ\]
\[ = \frac{1}{2}\left[ \cos 120^\circ + \cos \left( - 40^\circ \right) \right] \cos 160^\circ\]
\[ = \frac{1}{2}\cos \left( 160^\circ \right)\left[ - \frac{1}{2} + \cos 40^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{2}\cos 160^\circ \cos 40^\circ\]
\[= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ 2\cos 160^\circ \cos 40^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 160^\circ + 40^\circ \right) + \cos \left( 160^\circ - 40^\circ \right) \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos 200^\circ + \cos 120^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 360^\circ - 160^\circ \right) - \frac{1}{2} \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\cos 160^\circ - \frac{1}{8} \left[ \because \cos \left( 360^\circ - 160^\circ \right) = \cos 160^\circ \right]\]
\[ = - \frac{1}{8} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Prove that:
cos 20° cos 40° cos 80° = `1/8`
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.