Advertisements
Advertisements
प्रश्न
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
उत्तर
\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[\Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{0}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}\]
\[ \Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0\]
\[ \Rightarrow \frac{yz + zx + xy}{xyz} = 0\]
\[ \Rightarrow xy + yz + zx = 0\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
sin 163° cos 347° + sin 73° sin 167° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.