मराठी

If X Cos θ = Y Cos ( θ + 2 π 3 ) = Z Cos ( θ + 4 π 3 ) , Prove that X Y + Y Z + Z X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 

बेरीज

उत्तर

\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[\Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{0}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}\]
\[ \Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0\]
\[ \Rightarrow \frac{yz + zx + xy}{xyz} = 0\]
\[ \Rightarrow xy + yz + zx = 0\]

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 18 | पृष्ठ १९

संबंधित प्रश्‍न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


sin 163° cos 347° + sin 73° sin 167° =


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×