मराठी

Prove That: Sin 3 a + Sin 5 a + Sin 7 a + Sin 9 a Cos 3 a + Cos 5 a + Cos 7 a + Cos 9 a = Tan 6 a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]
बेरीज

उत्तर

Consider LHS: 
\[ \frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A}\]
\[ = \frac{\sin 3A + \sin 9A + \sin 5A + \sin 7A}{\cos 3A + \cos 9A + \cos 5A + \sin 7A}\]
\[ = \frac{2\sin \left( \frac{3A + 9A}{2} \right) \cos \left( \frac{3A - 9A}{2} \right) + 2\sin \left( \frac{5A + 7A}{2} \right) \cos \left( \frac{5A - 7A}{2} \right)}{2\cos \left( \frac{3A + 9A}{2} \right) \cos \left( \frac{3A - 9A}{2} \right) + 2\cos \left( \frac{5A + 7A}{2} \right) \cos \left( \frac{5A - 7A}{2} \right)}\]
\[ = \frac{2\sin 6A \cos \left( - 3A \right) + 2\sin 6A \cos \left( - A \right)}{2\cos 6A \cos \left( - 3A \right) + 2\cos 6A \cos \left( - A \right)}\]
\[ = \frac{2\sin 6A \cos 3A + 2\sin 6A \cos A}{2\cos 6A \cos 3A + 2\cos 6A \cos A}\]
\[ = \frac{2\sin 6A\left[ \cos 3A + \cos A \right]}{2\cos 6A\left[ \cos 3A + \cos A \right]}\]
\[ = \tan 6A\]
 = RHS
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 8.04 | पृष्ठ १८

संबंधित प्रश्‍न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


cos 40° + cos 80° + cos 160° + cos 240° =


The value of cos 52° + cos 68° + cos 172° is


cos 35° + cos 85° + cos 155° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×